Phase-Root Locus
and Relative Stability

In this article, a new graphical tool
called the phase-root locus is intro-
duced. It is the dual of the conventional
root locus, and indicates the motion of
closed-loop poles in the s-plane as phase
is added to the open-loop transfer func-
tion. The root locus/phase-root locus plots
will be shown to facilitate destabilization
diagnosis, which may help determine
what part of an unstable physical system
requires modification. For example, des-
tabilization may be caused by one closed-
loop pole due to a phase-shift at one value
of system gain, and by a different pole due
to gain variations at another value of sys-
tem gain. The phase-root locus also allows
relative stability information, including
phase margin, to be accessed from the
s-plane. Thus the s-plane can now be used
for robustness analysis/design as well as
transient analysis/design. The phase-root
locus shows promise as a tool in compen-
sator design as well as in the teaching of
classical control theory.

Introduction

In classical single-input, single-output
linear time-invariant control analysis and
design, two primary measures of relative
stability are in common use: gain margin
(GM) and phase margin (PM). It has often
been noted that neither margin alone is
sufficient to characterize relative stability
[1]; one margin can be large (indicating a
robust system), but the other extremely
small (and therefore in fact the system is
not robust). A new plot, the dual of the
conventional root locus (RL) named the
phase-root locus (PRL), is presented in
this article to help visualize relative stabil-
ity from a root-locus viewpoint. The con-
ventional RL may be referred to as
“gain-root locus” because it shows the
locus of closed-loop (CL) poles as the gain
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is varied; similarly, the phase-root locus
shows the locus of CL poles as the phase
is varied.

While PM often seems to students a
somewhat abstract concept, GM is quite
clear. Gain margin discloses the factor by
which the DC forward amplifier gain K
can be increased beyond the design value
Km (“m” for “mth design”) and the CL
system remain at least marginally stable.
The increase in gain may result from
either intentional adjustment or uninten-
tional parameter variations, the latter par-
ticularly bringing in the issue of
robustness. Conceptually, the GM is eas-
ily determined from the RL diagram by (i)
finding the jw-axis crossing, denoted sa,
of the branch which for the lowest gain
crosses over into the right-half plane
(RHP); (ii) applying the CL pole magni-
tude condition to find the gain K = Ko for
which sa is a CL pole: Ko = 1/IGH(sa)l,
where KGH(s) = KG(s)H(s) is the open-
loop transfer function,; (iii) by definition,
the gain margin is thus GM(Km) = Ko/Km.
As will be seen, this procedure can be
automated in practice.

Phase-Root Locus (PRL)

In textbooks [1-3], stability margins
are generally put off until frequency-re-
sponse methods are covered. This is be-
cause although GM can be readily
determined from a RL plot, there is appar-
ently no way to determine PM from a RL
plot. To help visualize PM and the relation
between it and CL poles when phase is
added to the open-loop transfer function,
the phase-root locus (PRL) is introduced.
The idea of a PRL was hinted at in [4], but
was immediately dismissed because
“sketching rules are not available and
there is limited, if any, useful information
for the designer.” However, the absence

of sketching rules is no longer an obstacle,
given the computing power of today’s
personal computers. In particular, its
computation becomes straightforward
when it is realized exactly what the pro-
posed locus represents. Furthermore, this
article suggests ways that it can be used in
a design situation. More on the relation
between PRL and existing graphical tools
is said later.

Recall that the conventional Evans (or
“gain-"") root locus plot depicts the locus
of CL poles traced out in the s-plane when
one adds to (or subtracts from) the log-
magnitude gain while the phase-angle
added to the given design transfer func-
tion is held at zero. Similarly, the PRL
plot may be defined as one depicting the
locus of CL poles traced out in the s-plane
when one adds to (or subtracts from) the
phase-angle while the log-magnitude gain
added to the given design transfer func-
tion is held at zero (this of course does not
imply that the gain Kn, is itself unity, but
rather IKnGH(s)l = 1 along the PRL).

The conventional gain-root locus is
equivalently the locus of values of s,
SG-RL, satisfying the angle condition

AGH(SG_RL) =, )
(conventional (“gain-")
root locus angle condition)

where £ is an odd integer and where zero
phase-angle is added to the original open-
loop transfer function KmGH. (More gen-
erally, KmGH could be replaced by
KmGcGH where Gc(s) is a compensator.)
Notice the absence of Km (> 0) in (1).

Analogously, the PRL is the locus of
values of s, sp.rL, satisfying the magni-
tude condition
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Contours of constant phase (deg.) and phase-RL for Km = 80
G(s) = (s+30)(s+0.4)/[s"2(s+50)(s+10)(s"2+1s+10)]
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Contours of constant magnitude, with gain-RL
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Fig. 2.
IKmGH(sP_RL)I =1, (2) where Kn is the current design value of
(phase-root locus  gain K, afnd where zero log-magnitude
magnitude condition)  gain is added to the original KmGH open-
loop transfer function.
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One may obtain conventional (“gain-
) root locus plots for a transfer function,
albeit with reduced computational effi-
ciency and over a chosen region of finite
extent, by plotting the isocontours of
ZGH(s) with the single contour ZGH(s)
= 7 selected. Fig. 1 shows several con-
stant-phase contours for the transfer func-
tion with design gain Ky and H = 1
(unity-feedback)

)= (s+0.4)(s+30)
KnGl s2(s +1())(s+50)(s2 +s +10)

(3)

The RL of (3) may be extracted from Fig.
1 as the bold curves labeled +180°. The
direction of the automatically-generated
arrows indicates the usual RL CL pole
movement as increasing gain is added to
G(s); IG(s)l decreases from e at an OL
pole to zero at an OL zero. (All references
to automation and code in this article are
to the author’s original Matlab code.) In
addition, discussed later, the PRL for Km
= 80 is superimposed on Fig. 1. In ail
figures, only the interesting areas near the
jw-axis crossings and/or the origin are
shown, not entire loci.

The rather complicated open-loop sys-
tem function in (3) was chosen because it
has some interesting features that can be
observed using PRL, as described below.
G(s) could represent a positioning system
with several linked mechanical elements.
Specifically, a mass/damper paraliel com-
bination {m1, B1} yields a simple real pole
at -B1/mj in the mechanical impedance of
the combination, Zi1(s) =
(1/m1)/(s+B1/m1) (impedance here de-
fined as the Laplace transform of veloc-
ity/Laplace transform of applied force).
Two of these mass/damper systems in se-
ries give an overall transfer function
Z12(s) having simple poles at -B1/m; and
-B2/my, and a real zero at -(By + B2) / (my
+ my) (a motor also introduces real poles
into an overall transfer function). The par-
allel combination of a mass, damper, and
spring {m3, B3, k3} has an impedance
Z3(s) = (sim3)/{s” + [By/ms]s + Ka/ms},
which has complex-conjugate-pair poles
if B3 < 2{m3K3} "2 If this latter system is
connected in series with the above parallel
combination Z;2(s), a form of transfer
function similar to that in (3) (including
numerator order) results. The double pole
at s = 0 in (3) results if the integral of
position is considered the output variable,
or if a PI controller has been applied.
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There is a discontinuity in phase from
-180° to +180° on either side of the RL,
which is a manifestation of the phase dis-
continuity on the negative real axis in the
G(s) plane. This discontinuity is detrimen-
tal for contour plotting on a coarse grid;
notice the jagged 180°-contour in Fig. 1.
Therefore, modified versions of “rlocus”
in Matlab are used to generate all sub-
sequent RL plots. To help interpret Fig. 1,
note for example that the contours labeled
-123° would be RL branches for the same
system to which a uniform phase of -57°
were added, because then the -123°-con-
tour would become the -123-57 = -180°-
contour (the RL).

In a similar way to that above, one may
obtain the PRL for a transfer function,
albeit without efficient plotting rules in
existence (at least so far) and in a selected
region of finite extent, by plotting the
isocontours of IKmGH(s)l with the single
contour IKinGH(s)l = 1 selected. (A few
isocontours are presented in [2], but no
reference is made to the unit-magnitude
isocontour, nor is any use made of or
significance drawn from those contours,
such as (2) vs. (1).) Fig. 2 shows several
constant-magnitude contours for the
transfer function in (3) with Ky, = 80. The
PRL is the two bold contours labeled “1”
(IKiG(s)l = 1). This is also the PRL super-
imposed on Fig. 1, for comparison with
the constant-phase loci. Similarly, for ref-
erence the RL is superimposed on Fig. 2.
Fortunately, there is no discontinuity
problem for the PRL; the magnitude func-
tion is generally continuous near unity.

Notice in Fig. 2 that if the calibration
numbers are denoted “X,” then each la-
beled contour is the PRL for Km = 80/X;
e.g., the contour 0.332 is the PRL for Km
=80/0.332 = 241. Thus, in Fig. 2 we have
several PRL plots for different values of
Km, all simultaneously shown—just as
Fig. 1 shows several RL plots for different
added angles. When respectively rela-
beled with K, or angle values, these mul-
tiple plots can be handy in system design
for examining several possible alternative
systems simultaneously. (We can even su-
perimpose the multiple RL/multiple PRL
plots.) While the appearance of the uncali-
brated conventional RL plot ZKmG(s) =
+n¢€ is identical for all positive values of
Km (and thus Ky, is absent from (1)),
clearly the PRL plot depends directly on
Km.

The direction of the automatically gen-
erated arrows on a given PRL contour is
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the direction of motion of the associated
CL pole as negative phase is added. This
selection of arrow directions is analogous
to that used for RL: the direction of CL
pole motion that for minimum-phase sys-
tems tends to be more destabilizing. Let
the numbers of poles and zeros encircled
by the PRL contour be, respectively, Np
and N;. Then by Cauchy’s principle of the
argument [5], the phase increase over one
complete clockwise (CW) revolution
around the PRL is 360° - [Np - N;]. Thus,
adding negative phase causes the -180°-
point (CL pole) to move CW and thus the
arrows point CW for Np > Nz If Np < N,
the arrows point counter-clockwise
(CCW). An equal number of poles and
zeros is never encircled.

It may be asked how phase-angle is
added to an open-loop transfer function. It
is agreed that all added phase is conjugate-
symmetric [6]; thus, the constant-magni-
tude contour (and PRL) plots are always
conjugate-symmetric. (Though attention
is focused on the upper half-plane, a small
region below the real axis is included in
all plots for verification.) Details concern-
ing a transfer function that would have
such a uniform conjugate-symmetric
added phase are investigated in [6]. If the
concept of PM is accepted as valid and
relevant, the study of addition of uniform
phase to a transfer function is equally rele-
vant because that is precisely what PM
quantifies. And a highly convenient tool
for study of the addition of uniform, con-
jugate-symmetric phase is the PRL. One
might entertain the possibility that PM and
added phase are irrelevant until, for exam-
ple, the appearance of a system with large
GM but small PM in the presence of pa-
rameter variations/model inaccuracies.

Comparison of Figs. 1 and 2 is remi-
niscent of the relation between electric
and magnetic field lines: Electric field and
RL isocontours have beginnings and ends
(in the electric case because of the exist-
ence of electric charge, and in the controls
case because of the presence of poles and
zeros), while magnetic field and PRL iso-
contours close on themselves (magnetic
charge does not exist). Specifically, posi-
tive charge and poles are analogous
(sources of electric field lines/RL
branches) while negative charge and zeros
are analogous (sinks of field lines/RL
branches). Moreover, the RL and PRL. are
orthogonal at all of their intersections, just
as are E and H. The analogy is striking,
and a mathematical study of this might
prove fruitful.

InFig. 3, the RL and PRL are superim-
posed for K = 150. The intersections of
the two loci, designated “P,” are the loca-
tions of the actual design CL poles for Km
= 150; both (1) and (2) must be satisfied
for any value of s to be a CL pole of
KmGH(s). We see that the system is CL
stable for Km = 150 (and, e.g., from con-
tour 0.332 in Fig. 2, unstable for Ky, =
241). Relative stability and the stability
margins shown on Fig. 3 are discussed
below. '

In teaching controls, the author has
found the PRL to succeed when all else
fails in bringing a student to understand
what a conventional RL is—by means of
the contrasting duality. For example, a
common error made by the average stu-
dent, when asked the condition for s =
SG-RL to be on the RL, is to reply that
KmGH(sg-rL) =-1 when in fact the answer
is (1). When shown that the complete set
of values of s, denoted spgrL, for which
IKmGH(sp-rL)l = 1 constitutes a different
set of contours from the RL (namely, the
PRL) drawn for a particular value of DC
gain Km, they see the duality and the
meaning of both root loci. Another way
students express the same misunderstand-
ing is: when asked the significance of any
value of s on the RL, sG.rL, they reply that
sG-RL must be a CL pole of the given
system. This is untrue, because an infinite
number of values of sg.rL exists, while the
number of CL poles of a “given system”
is finite (= N, system order). Only the
intersections of the two loci, SG-RL = SP-RL,
are the CL poles scL; only they satisfy
KmGH(scL) = -1. After seeing PRL, stu-
dents are less likely to make these mis-
takes. Before seeing PRL, they may
subconsciously wonder why RL is de-
fined by only one of the conditions, and
“what about the other (magnitude) condi-
tion?”

Phase-Root Locus
and Relative Stability

In both RL and PRL plots, the jo axis
is the stability boundary, because any CL
pole in the RHP corresponds to a rising
exponential in the CL impulse response.
In the conventional RL plot, the stability
boundary is reached for (3) for K = Ko =
163.03 at s = sa = jwpc where @y is the
“phase-crossover” frequency of Bode
analysis. This crossing is labeled in Fig.
3. Note that at s =sa =jmyc, as at all points
on the RL, ZGH(jwyc) = & (hence, “phase
crossover” from a phase larger than 1t (or
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Root locus and phase-root locus: Intersections = CL poles
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Root locus and phase-root locus: Intersections = CL poles
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have found helpful (there is not just one
GM or PM value for any given system if
the gain is adjustable). GM and PM both
depend on Ky because Km affects the
location of the CL “design system” pole(s)
from which the margins are determined.
To eliminate Ko from (4), we substitute

Ko = 1/iGH(jwpc)! into (4), giving

GM dB(Km) = 2010g10(K0) - 2010g10(K§n))
. (5a

= -20log ((GH({0,)K,). (5b)

We may conventionally say that if we
add M dB of gain to KnGH uniformly for
all values of s, then as long as M <
GMgs(Kum), the resulting CL system will
be stable (assuming GMag(Km) > 0). The
calibrated RL then shows how “P”, the CL.
poles, move as K, is altered by adding
gain. If Km is increased, “P” move along
the RL branches in the directions of the
RL arrows because the PRL contours
change. If Ny >Nz, a PRL contour expands
away from its OL pole(s) as Kn is in-
creased (the expansion is not “linear,” as
is true for a Nyquist plot; see Fig. 2); it
shrinks toward its OL zero(s) for Ny <N,
as Kn is increased.

.One may determine the GM of (3) for
Km = 150 from the RL, as previously
discussed. Semi-manually, we find from
Fig. 3 that 55 = jwpc = j2.968 so that 1/Ko
= IG(wpc)l = 0.006134, and thus from
(5b), GM4g(150) = -20log10(0.006134 -
150) = 0.72 dB, which is accurate to the
resolution of the Matlab command “gin-
put” (approximately the value given by
“margin”) or, less accurately, by a manual
axis-reading. This calculation is fully
automated in Fig. 3 and later figures. For
Km = 150, we conclude that the GM is
unacceptably low.

Fig. 4 shows the dual, automatically
calibrated RL/{Km, = 80 PRL} plot in the
region of the jw-axis crossing of the RL.
We first focus on the RL branch plot. (The
contour in Fig. 4 enclosing the OL pole,
the Km = 80 PRL, is calibrated with PM
values, as will be described below in the
discussion of Fig. 5.) From our previous
analysis, we have GMgg(80) = -20 logio
(0.006134 - 80) = 6.18 dB. The calibra-
tions on the RL branch are uniformly
incremented “nice” values of GM in dB

-1t) to one less than 7 for points along the
jo axis). The GM in dB for the design
value K =Kn is

GM (K ) =20log, (K/K ) (4) for the system with gain K adjusted so
that the gain-critical CL pole is at the
The dependence of GMandPMonKm  given calibration location. “Gain-critical

is made explicit in this article by writing CL pole” means the CL pole to cross over
GM(Kn) and PM(Km), a notation students
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to the RHP for the smallest increase in Ky;
this is the pole “P” whose RL branch is
depicted in Fig. 4. For example, the GMdB
for Ki adjusted to 163.03 so that this CL
pole is located at the jw-axis crossing is
GM¢g(163.03) = 0 dB. Similarly, the cali-
brated points nearest “P” (CL pole for K
= 80) are 7.5 dB and 5.0 dB, in between
which is “P”, where GM4g(80) = 6.18 dB.

Clearly, for a different value of Ky, the
PRL would expand or contract, but the
GM calibrations markings on the RL
branch in Fig. 4 would not change. Dis-
playing the calibration in this way can be
a useful design tool—showing in the s-
plane what various alternative gain values
imply for the resulting GM, and even ap-
proximately for dynamic compensation in
the vicinity of the depicted RL. Also made
but omitted for brevity are automatically
calibrated RL plots showing, for uni-
formly or logarithmically spaced sets of
Km values, the Ki, value required to place
a CL pole at the given position. In con-
junction with Fig. 4, such plots could be
useful for design. (Km-calibrated RL plots
are occasionally seen [7], but may not be
automated, nor show the RL information
in Figs. 4 and 5.) In fact, if one does not
mind seeing a lot of numbers, each cali-
brated point could show the GMgB and the
corresponding Km value required to
achieve that GMgs (e.g., “GMgg(80) =
6.18 dB” or “80/6.18 dB”), with the added
benefit of also showing the locations of all
the resulting CL poles in the viewing win-
dow. Furthermore, after dynamic com-
pensation, the loci may be replotted (by
re-execution of the same Matlab code) for
visualizing refinements on GM and pole
placement.

In Fig. 3, the stability boundary is
reached along the PRL at s = sp = jgc
where Mg is the “gain-crossover” fre-
quency of Bode analysis. Just as jwpc is
known to be an imaginary-axis crossing of
the RL, jogc is an imaginary-axis crossing
of the PRL. At s = sp = j®yc, as at all points
on the PRL, IKmGH(sB)| = IKmGH(jwgc)l
= 1 (hence “gain crossover” on the jo axis
for @ > @gc vs. © < Wgc). Km determines
the locations of the PRL contours and thus
SB, and consequently the value of ¢o =
ZGH(sB).

Designate by s; the (stable) CL pole,
for the design value K = Kn, that is on the
PRL contour passing through sg. We may
call s; the phase-critical pole for K =
Km—the CL pole becoming metastable
for smallest amount of added negative
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phase (e.g., the lower “P” in Fig. 3). At sy,
the angle condition ZGH(s1) = +x is sat-
isfied. The angle ¢o = ZGH(sB), however,
is not equal to & (unless the design system
is already marginally stable; i.e., unless
Km=Ko). Atboth sy and s, the magnitude
condition (2) is satisfied. As a negative
phase-angle is added to KnGH (e.g., from
a system parameter variation) and Kp, is
held fixed, the point s; will move along
the PRL contour toward sg, just as it
would move along the RL branch toward
sa if s; were the gain-critical pole and the
gain were increased with zero added
phase. Noting the analogy between Ko and
¢o, (compare with (5a))

PM(K ) =0, - (-1 (6a)
=0, + T (6b)

= AGH(ja)gc) + 7. (6¢)

Any integer multiple of 2r can be
added to ¢o for convenience. The PM is
easily obtained from a PRL plot, by (i)
graphically finding the metastable pole s
= s = jWgc on the PRL (e.g., by using the
Matlab command “ginput” or just reading
the axis crossing visually), (ii) evaluating
the phase at the metastable point, ¢o =
ZGH(jmgc), and (iii) using (6b) to com-
pute the PM. Again, the entire procedure
has been automated, so none of this work
need be done by the user.

For the example (3) with Ky = 150, one
finds semi-manually from Fig. 3 that sg =
JWge =j1.0744 rad/s so that ¢o = ZG(sB) =
£G(jwge) =-122.66°, and thus PM(150) =
57.3°, which is almost exactly what “mar-
gin” gives. Thus for Ky = 150, PM indi-
cates a robust system, but we saw above
that GM indicates the opposite.

If 0 is a negative phase-angle added to
the transfer function uniformly (and con-
jugate-symmetrically) for all values of s,
then as long as -0 < PM(Kp) the resulting
CL system will be stable (assuming
PM(Km) >0). Recall that for a point on the
PRL to be an actual CL pole, it must also
simultaneously be on the RL. This condi-
tion is achieved at s = sg by adding B¢ =
-PM(Km) = -(do + &) to KmG(s) so that the
new phase-angle at s = sp is 17 (the mag-
nitude is already 1 because sp is by defi-
nition on the PRL). The calibrated PRL
then shows how the CL poles “P” move as

negative phase 0 is added. “P” moves
along the PRL in the direction of the arrow
because the RL swings that way (carefully
review Fig. 1).

Now consider again' Km = 80. Using
the above procedures (see the bold PRL in
Fig. 2 or Fig. 5, discussed next), we may
obtain jwg: = j0.597, giving ¢o = -130.3°
and thus PM(80) = 49.7°. Thus, recalling
GMgg(80) = 6.18 dB, Km = 80 gives an
acceptably robust system. Figure 5 pro-
vides the same information as Fig. 4 (Kn
= 80) for the phase-critical CL pole, near
the origin. The contour crossing the jo
axis is the PRL. In analogy with how the
RL was calibrated in Fig. 4, the PRL in
Fig. 5 is calibrated to show the new PM
for the system with the phase adjusted so
that the relevant CL pole is at the indicated
location. It is seen that the new PM be-
comes increasingly more sensitive to CL
pole location movement as the PRL is
traversed CCW (6 > 0). Equivalently, the
movement of poles is less sensitive to
added phase changes for the more CCW
portions of the PRL, because it takes a
larger angle variation to move a given
distance along the PRL. Additional cali-
brations can be made to show the added

phase required to move the CL poleto a

given location on the PRL. Tentative dy-
namically-compensated systems can be
analyzed in this manner for further refine-
ments,

The new-PM calibration points on the
PRL in Fig. 4 match those in Fig. 5: the
*“30°” markings in Figs. 4 and 5 locate two
CL poles of 80G(s) with sufficient nega-
tive phase 0 added such that the resulting
system PM is 30°. Further, we see in Fig.
4 that the PRL encircling the OL pole
-0.5+j3.123 never crosses into the RHP.
Thus, when 6 = 8 = -PM(80) = -49.7° is
added to 80G(s) to cause the CL pole on
the lower PRL contour (Fig. 5) to reach
the jo axis (PMpew = 0°), the CL pole in
Fig. 4 merely moves to -0.46 +j2.85 (the
PMew = 0° marking). Analogously, when
sufficient gain Ko/80 is “added” to 80G(s)
to cause the CL pole on the upper RL
branch (Fig. 4) to reach the jm axis
(GMpew = 0 dB), the CL pole in Fig. 5
(lower branch) merely moves to -0.54+
j0.39 (the GMpew = 0 dB marking).

In Fig. 6 are shown the RL and the K
= 5 PRL. In this case, GMgg(5) = 30.27
dB (falsely indicating robustness) while
PM(5) = 14.9° (system is in fact not very
robust). The situation can be made arbi-
trarily more extreme by further reducing
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Root locus and phase-root locus: Intersections = CL poles
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K. The potentially deceiving situation of
great GM and poor PM is clearly illus-
trated when PRL is used in conjunction
with gain-RL, as is the opposite situation
in Fig. 3. Another interesting fact from
Fig. 6 is that the most destabilizing pole
for K;m = 5 (the “P” near the origin) is
never destabilizing for added gain, but is
very destabilizing for added negative
phase. That is because while the RL
branch for that pole never crosses the j®
axis, the corresponding PRL contour
does. The opposite comments apply to
Fig. 3: The gain-critical pole (on the upper
branch) has a PRL contour that never
crosses the jo axis. Thus, no amount of
added phase will cause that pole to be-
come unstable, while adding a very small
amount of gain will. Simultaneous
RL/PRL plots reveal a cause of one mar-
gin being very large and the other very
small: For low gain one pole may become
unstable by adding phase, while at a high
gain a different pole may become unstable
due to added gain.

Fig. 7 shows a metastable CL system:
Km=Ko=163.03. The upper PRL contour
is tangent to the jo.axis exactly where the
RL intersects the imaginary axis: sa = sB.
Thus, GM4e(163.03) = PM(163.03) = 0.
Also, there is more than one imaginary-
axis-crossing frequency, the upper one of

74

which (barely) coincides with jopc: For
marginal stability, ®gc = ®pc. Looking at
the lower-than-{Xo = 80/163.03 = 0.491}
contours in Fig. 2, we see that for Ky, > Ko
there are three imaginary-axis-crossing
frequencies (e.g., see 0.395 and 0.469),
until Kn, is sufficiently large that the now-
merged PRL contours no longer buckle
into the left-half plane (the first such con-
tour in Fig. 2 is 0.332). The PRL gives us
a window into the s-plane, showing that
multiple “@gc” values are caused by PRL
curves passing in and out of the RHP.

An example of a CL unstable system is
shown in Fig. 8. Here Kn = 210, so that
GMg4g(210) = -2.2 dB while PM(210) =
-43°. Now both margins are negative
(both margins always have the same sign),
and the PRL contours have merged into
one large contour. In Fig. 8, we find that
for Km = 210, the upper-section of the
PRL contour, not the lower is the “culprit”
(the one with the destabilizing pole). Con-
trarily, in Fig. 6 (Km = 5) the lower PRL
contour is the more “dangerous” one and
therefore defined the PM. In terms of the
mass/damper/spring application, the up-
per branch/contour is dominantly control-
led by the mass/damper/spring series
combination, which would be responsible
for deviations into the RHP for that
branch/contour. Thus, if instability is

caused by the upper branch/contour, this
part of the system needs to be modified.
The lower branch/contour is determined
by the mass/damper real poles and the
poles at s = 0. If one of the 1/s factors is
an electronic integrator, deviation of the
lower CL pole into the RHP could be
caused by distortions in the integrator, for
it determines the near-origin behavior of
that contour. Thus, by looking at the
RL/PRL plot, we may quickly diagnose
the physical source of destabilization.
Further insight is obtained by compar-
ing the upper CL poles for Km = 150 (Fig.
3) with those for Km = 210 (Fig. 8). For
m = 150, no amount of added phase will
cause that pole to go into the RHP, while
for Km =210, a sufficient positive uniform
angle added (above -PM = 43°) could
stabilize the pole (and the system) with the
same “destabilizing” value of Km (i.e.,
210)! Perhaps an approximate uniform
positive phase-shifter [6] could stabilize
this system.

Note that if no PRL contours extend
into the RHP, @ = co. This is the s-plane
visualization for the infinite Wy com-
monly encountered in Bode analysis. It is
the analog of the well-known fact that (pc
= oo corresponds to no RL branches ex-
tending into the RHP. Incidentaily, adding
(conjugate-symmetric) uniform phase af-
fects the Bode plot by shifting the phase
curve up/down; the PRL shows where the
CL poles move as this is done. Similarly,
adding uniform gain moves the Bode log-
magnitude curve up/down, and the RL
shows how the CL poles correspondingly
move.

Now consider a CL system that for a
certain range of 9 is unstable, but for ad-
ditional added negative phase becomes
stable. This situation is analogous to the
“conditionally stable system” in RL
where only for Ky, within a finite range is
the CL system stable. It could be diag-
nosed by a PRL such as the upper contour
0.469 (Km = 170.7) in Fig. 2, which has a
small excursion into the RHP. By exam-
ining the RL/{Kn = 170.7} PRL upper-
branch intersection in Fig. 2, we see that
this is an initially unstable system (Km >
Ko = 163.03). A careful study of the PRL
shows that if a phase 6 > 20° or < -20° is
added, the upper CL pole becomes stable,
and the lower pole is also still in the left-
half plane. The system is thus “condition-
ally unstable,” for 181 < 20°. One might
also be concerned that contours having
shape similar to that of the left 0.395 con-
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Root locus and-phase-root locus: intersections = CL poles-
KmG(s) = Km (s+30)(s+0.4)/[s2(s+50)(s+10)}(s"2+1s+10)}; Km =&

3.5+

Fig. 6.

tour in Fig. 2 might for some added phase
cross the j axis, causing instability.

The PRL also facilitates understanding
the relations between Wgc and Wpc, and
thus provides a further link between Bode
and s-plane analysis. The following state-
ments are based on the assumption, com-
monly true away from resonances, that
IKmGH(jw)l is a decreasing function of ®.
(The frequency response is just KGH(s)
for s = jw.) Let Km1 be a design value of
K (such as 80, above) for which the CL
system is stable, and Km2 be another (such
as 210) for which it is unstable. Let the
respective gain-crossover frequencies be
wgct and g2 Noting that (i)
IKm1GH(wgc)l = 1, (ii) IKoGH(jwypc)l = 1,
and (iii) Kmi < Ko, it follows that
IGH(j®gc1)i > IGH(jopc)l. Therefore, from
our original assumption that IGH(jw)l de-
creases with ®, we may conclude that (g1
< @pe. This is easily seen in Figs. 3 and 6,
because g and Wpc are both meaning-
fully shown on the same axis (unlike
Bode). By identical reasoning, we can
show that Wgc2 > Wpe, Which is verified in
Fig. 8.

Seeing the intersections of the two root
loci and simultaneously viewing the paths
along constant-magnitude and constant-
phase contours clarify the stability situ-
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ation. The above discussion is just one
example of how use of the PRL in con-
junction with the conventional “gain-”
root locus can help the student and con-
trols engineer better understand exactly
“what is going wrong” when a system
goes unstable, and how the poles might be
most easily moved to meet the temporal
performance and robustness specifica-
tions. This is true whether or not the sys-
tem is second-order dominant. Once
modified by, e.g., a lead or lag compensa-
tor, the replotted RL/PRL will indicate
progress made on robustness, and further
optimal refinements that may be made on
the compensator to meet the specifica-
tions. Such techniques are particularly
helpful for the “die-hard root locus per-
son” who prefers RL to Bode analysis and
design, which previously had a monopoly
on relative stability analysis.

Relation to Other Graphical Tools

The RL/PRL plot provides full stabil-
ity information in the s-plane complemen-
tary to the Nyquist plot in the
KmG(s)-plane. Either plot easily provides
GM and PM information. The calibrated
RL/PRL plots in addition show, without
replotting, what happens to all the CL
poles and the GM or PM as variable gain
or phase is added “on either side of” a
given (fixed) design system KmG(s). Con-

trarily, the Nyquist diagram must be re-
plotted (expanded/contracted or rotated
about the axes) for each variation in gain
or phase, and even then gives no direct
information on the new CL pole locations.
Advantages of the Nyquist plot over
RL/PRL are a set of plotting rules for
hand-calculation, as well as frequency re-
sponse information that in the Bode form
is useful in design. Also, the PRL as well
as the Nyquist plot must be replotted when
Km is changed. Both the RL/PRL and the
Nyquist plot give unambiguous stability
information—both absolute and rela-
tive—for both minimum-phase and non-
minimum-phase systems.

In (4] and [8], the information con-
tained in RL and PRL plots is provided in
an alternative graphical form. Four sepa-
rate plots are required in [4], of CL poles
vs. gain or added phase: Isl vs. gain, Isl vs.
added angle, Zs vs. gain, and Zs vs. added
angle. For the various plots, one must
keep track of which magnitude-of-pole
curve is associated with which angle-of-
pole curve (all magnitude-of-poles curves
are on one pair of axes, and all angle-of-
poles curves are on another single pair of
axes). The dominant pole is also not
clearly evident. The RL/PRL is drawn on
one set of axes: the familiar ¢ and jo. The
approach in [4] may be more advanta-
geous than RL/PRL when precise values
and trends of these pole-magnitude and
pole-angle parameters are individually
sought. RL/PRL and [4, 8] may be used
together, combining the strengths of each
method.

The plots in [4] are so far unknown to
be the basis of algorithms for dynamic
(beyond proportional-only) compensator
design. Even the Nyquist diagram is par-
tially eclipsed by Bode techniques in de-
sign algorithms, at least for
minimum-phase systems. This does not at
all render these plots useless. They help
the designer visualize in a variety of ways,
as stability quantifiers, indirect temporal
response indicators, and illustrators of
non-dynamic compensation effects. Simi-
larly, the PRL has not yet at this initial
stage been articulated as the basis of a
popular design method. Of course, it is
true that DC gain (by electronic amplifi-
cation) is more easily intentionally varied
than is uniform phase. However, initial
studies in [6] suggest ways that movement
along the PRL can approximately be im-
plemented using realizable compensators,
for limited-magnitude shifts. Thus, the
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Rootlocus and phase-root locus: Intersections = CL poles
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to remember that the phase-root locus in-
dicates phase margin and the gain-root lo-
cus indicates gain margin. The PRL
facilitates investigation of the temporal
characteristics trends of CL poles as phase
is varied, by the same method as one evalu-

ates transient trends using RL as K, is var--

ied.

It may be asked what it matters how the
poles move around when phase is added.
The analogous question may be asked of
conventional RL. Root locus shows where
CL poles “move”—directly what happens
to the CL temporal response—when gain is
varied. For exampile, if the RL is primarily
horizontal at the design dominant CL pole,
then moderately changing K from the design
value Kn, will cause the dominant CL pole
© to vary, so the settling time will vary with
K, but the ringing (damped oscillation) fre-
quency will not significantly vary.

Similarly, the PRL shows explicitly
what happens to the temporal response
when the phase-angle is perturbed (e.g.,
by model parameter error/variation). For
example, if the PRL is primarily vertical
at the design CL poie, then the settling
time will not be affected by phase vari-
ations 8, while the ringing frequency will.
Bode plots do not directly give this infor-
mation; this instant visualization of the
temporal response is one reason among
others for the preference of the RL ap-
proach by some designers. Unlike Bode
plots, the RL/PRL plot provides both rela-
tive stability and temporal characteristics
information without dependence on a sec-
ond-order assumption relating them (be-
cause the effects of/on all CL poles are
individually available).
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Finally, the computational time of
RL/PRL is modest. All plots were done
using Windows Matlab 6.2c.1 on a Pen-
tium PC. The isocontour arrays are 100 x
100 pixelsz, but results are about as good
with only 50 x 50 or less. With no efforts
yet made on code optimization, the times
for the most computationally-intensive
plots in this article (Figs. 4-5) are as fol-
lows: The 100 x 100 arrays take 30 s (50
x 50 takes only 7 s) to generate and the
multiple-curve plotting and full calibra-
tion of all contours, including arrows,
takes another 28 s (50 x 50 takes 22 s).
Noting that an uncalibrated, unlabeled
“rlocus” call alone takes 5 s (20 s on a
laptop), the wait is quite reasonable and
may be further reduced by code optimiza-
tion.

Conclusion

The PRL plot is a means of easily
determining phase margin (and gain-
crossover frequency) using a root locus
approach, which previously could not be
done. More important, it offers a new di-
mension of potential design information:
Now the s-plane can be used for robust-
ness as well as transient design, and it can
help diagnose the faulty elements in an
unstable CL control system. A design
technique based on approximate PRL and

uniform phase modifications in the reso-
nance region of the s-plane has already
been developed [6]). By adding uniform
phase, the RL branches swing and deform
(see Fig. 1), causing the intersections with
the PRL and thus the CL poles to move in
a predictable manner. The exact trajecto-
ries of CL poles toward and away from
instability for added gain and phase are
provided by the RL/PRL plot. As more is
learned about the causes of phase vari-
ation (e.g., via parameter error/variation),
the PRL may provide the resulting tempo-
ral effects and be increasingly practical as
a design tool. Conventional RL-based de-
sign methods may be enhanced by the
complementary information in the same
format provided by the PRL.

The control system designer with ex-
perience learns patterns that occur in con-
ventional RL plots when zeros and poles
are added or subtracted, or plant or con-
troller parameter values are altered. How-
ever, only one of two “dimensions” of
root-locus behavior is then examined.
Also important, particularly for robust-
ness analysis, may be how the CL poles
vary with (often unintentionally) added
phase. Again there will be patterns—here-
tofore unexamined—in the effects that
pole/zero addition/relocation have on the

contours that CL poles take when phase is
added. Thus new insights and a sense of
completeness not attainable with only
conventional RL are now available with
its dual, the phase-root locus.
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