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Supplementary materials

1: TRANSLATION OF RLSTABILITY CRITERION INTO BODE GAIN-BASED CRITERION
FOR MINIMUM-PHASE SYSTEMS.

For minimum-phase systems, GM and PM have their usual meanings; e.g., an increase in gain is typically
required to move the closed-loop pole into the right half-plane. [Note, however, that there are rare
exceptions, such as G(s) = (s* + 2s + 401)/[s*(s + 100)(s* + 20s + 1.01210%), for which the closed-loop
systemis unstable for K, < 1.38+10°.] The jo-axis is the boundary between stability and instability. Thus
for such systems, if s;(K,) is imaginary fori =1, and K, = K, then the system is stable for K, < K, and
unstable for K, > K,,. [Itis assumed that K is the lowest value of K, for which there is an imaginary s,(K,).]
Because s;(Ko) is imaginary, we may write s;,(K,) = jo, because, as s;(Ko) is on the root locus,
1KG(5;1(Kyp)) = IK,G(jo,.) =-180° so that /K, G(jo) crosses over from greater than -180° to less than
-180° at ® = ®,.. Because the magnitude condition is satisfied for the gain-modified plant at s =s;,(Ko) =
j®p, it follows that Ko= 1/1G(jo,c) |. Thus for stability, K., < 1/1G(jo,e) |, or K, G(o,.) |< 1, which s the
required gain stability condition on the frequency response K, G(jw). The factor by which K, <K is called
the GM, namely GM(K,,) = Ky/K,, = 1/ [K,G(jo o) | or in dB, GMy(K,,) =

-20¢logo{ K G(jo,o) |}



2: RESONANCES DO NOT ALWAYS SIGNIFICANTLY AFFECT STABILITY MARGINS.
Although it was true in the example in the main paper that the resonance directly determined the stability
margins, this is not always the case. If the resonance occurs at a frequency well below the crossover
frequencies, the resonance may have practically no effect. For example, for

K,.G(s) = K,,*o(s + 10)(s + 1)/[s(s + 1000)(s + 800)(s +400)(s* + 2{w,s + »,”) where K, = 1210, the PMs
for{=0.2and 2¢10° (i.e., a very weak peak to a very sharp one) are, respectively, 42.89° and 42.4°, and
the respective GMs are 10.14 dB and 10.07 dB. Evenif {isincreased to 0.7, the PMis 44.6° and the GM
is 10.32 dB. From the view of PRL, the gain is sufficiently large so that there are not individual PRLs around
the open-loop poles, but rather only one large PRL around the entire open-loop pole structure. The large
PRL, way outside the open-loop poles, is unaffected by the details of any of the individual open-loop poles,
including the resonant pole near the jo axis. The PRL is far from the poles when K, is large because
IK,.G(s) |= 1 on the PRL, which requires IG(s) lto be very small and thus s to be very far from the poles of
G(s) for s to be on the PRL.

3: VISUALIZATION OF THE VALIDITY OF PM = 100 FOR CANONICAL SECOND-ORDER
SYSTEMS USING PHASE-ROOT LOCUS.
Without loss of generality, here we assume that w, = 1 rad/s.
In Fig. a below (next page) are shown the overlayed RL and calibrated PRL for 0 <{ < 1 in steps of 0.1.
The breakaway values of s on the RL are s,, =-{,. It is remarkable but predictable that even though the
phase-root loci are noncircular (except for { = 0), all their intersections with the associated root loci and thus
the closed-loop poles (shown as dots) fall on acircle [namely, the { =0 PRL, which for G(s) = ®,*/s*= 1/s*
is the unit circle]. In this simple case, the closed-loop poles are at (w, = 1 rad/s) / +(x - cos "'(£)).
The + signs in the figure below (next page) are the PRL calibration marks for every 10°; each
represents the PM for a closed-loop pole at that point along the PRL. For the upper half-plane, one may
multiply K, G(s) (holding K, = 1 and { fixed) by & for various values of 8, and observe the resulting root loci
and their intersections with the PRL (the closed-loop poles), which for 8 = 10°+( - PM(1) are the +signs in
Fig. 4. As phase is added, the RL swings around, and the closed-loop pole location changes direcHfy.
b below zooms in to show the PM = 100( locations; they are seen to fall quite close to the closed-loop poles
for most { up to 0.7, thus validating the approximate relation PM = 100( for the canonical second-order
system. Note that the radius of each closed-loop pole is ®, = 1 rad/s and the o value is
wg=0,{1-}". Theintersection of each PRL with the jo axis is o, for that value of {. Enforcement of
the magnitude condition and geometrical analysis show that the values of s on the PRL for the canonical
second-order system satisfy s = aw, / f, where f ranges from 0 to 27 and a satisfies the quartic equation o*
+4{cos(fa’ +4 %02 = 1. The special cases f =7 - cos ' ({) and f = 90 ° substituted into this quartic can easily
be analyzed to give, respectively, sl=w, (closed-loop pole for K, = 1) and
sl= Og = @, {[4C* + 117 - 2C%}' (jo -axis crossing of PRL).



Root locus and phase-root locus: Intersections = CL poles

K..G(s) = Ko, 2s(s + 2co, ) K, = 1, o, = 1 rad/s.
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4: The effects of a UCSPS on real-axis closed-loop poles. ,

If a closed-loop pole is on a real-axis RL branch, it and its associated RL branch do not move under
anegative UCSPS if the closed-loop pole is to the right of its RL-originating open-loop pole, nor under
a positive UCSPS if the closed-loop pole is to the left of its RL-originating open-loop pole, as the
resulting phase lies between the +180° and -180° discontinuity that occurs on the real axis from one side
of the RL branch to the other side. If, for example, a negative UCSPS is added and the real closed-loop
pole is to the left of the open-loop pole, no problem exists: Just add the negative phase to the greater-
than-(-180°) phases of KG(s) in the upper half-plane and the corresponding positive phase to the less-
than-(+180°) phases of KG(s) in the lower half-plane. Note that for plants with more poles than zeros,
the phase above the real axis just to the right of the rightmost pole is always negative. Between real
open-loop poles with intervening RL branches exist either real zeros or breakaway branches (phase
passes, respectively, through 0° or a +/-180° discontinuity). These latter facts justify the preceding
comments. ’

5: General expressions for g (t), the impulse response of the UCSP-shifted system.

It is interesting to note that if g(t) were individual bicausal sinusoids [, = 0 and -0 <t <« in (3a) of
the main paper], then (3c) with 6, = 0 would apply, because the FT terms would be totally localized
to ®, (and thus would not extend into the other half-plane). The sampling property of the Dirac delta
function would then be used to evaluate the LT, not the residue theorem. In general, all one can write
exactly are the following integrals, which cannot be evaluated in closed form:

N [0 o,c08(@)-0,sin(p,) + joccos(e,) jo(t+6/ o b (Wla)
gs(D=Z A, | € do/(2n), allt
=l o o} +0c}-0'+]j200
1 (oo
= _J| IG(jw) kcos{wt + /G(jo) + 0} do, allt, (W1b)
n JO

-o,t
where (W1a) [in which use is made of the unilateral FT of e acos(wgt +@,)] is true only for g(t) in (3a),

whereas (W1b) holds for any real g(t).



