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Supplementary materials

Note: Idiscovered a minor typo in the paper. On p. 126, run 3, the achieved steady-state erroris 0.1,
not 0.05. Note also that I should have explicitly mentioned in the paper, though it is obvious in Fig. 6a,
upper figure, that without compensation the closed-loop system is unstable for the value of gain setfor 0.1.
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1: EXPANDED FIG. 3 (on the following page).
For brevity, the figures below were included for only one plant in the paper. Showing here results for a
greater variety of plants demonstrates the validity of the RD ;, approximation and enhances understanding
of the relation between GM and PM (in particular, that that relation is plant-dependent).
Each plot in a row pertains to the same plant (in the plots, K, is referenced by K;):

(a, left column) Approximate RD,;, and exact RD,;, vs. gain K.

(b, center column) GM(K,,) and PM(K)) vs. K,..

(c, right column) GM(K,,)) vs. PM(K,)).
Note that numerous stylistic improvements have been made on the graphs in Fig. 3 of the paper relative
to those shown here.
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2: PLOT OF PM VS.RD_,, AND OF PM vs. { FOR G,(s) = @ */[s(s+2{w,)] with ®_= 1 rad/s
and K, = 1. Notice that PM rises with both RD,;, and {, for G(s) = G,(s). Remember, however,
that these plots are valid ONLY for the second-order canonical system with K = 1! Also, although
o, was set to 1 rad/s to numerically specify G,(s) in the figure below, the value of w, does not affect
the plots (w, affects only w,, ,,, and other critical frequencies via linear scaling of them).

Phase margin (PM) vs. RD,,, and PM vs. damping ratio ¢ for canonical
second-order system G,(s) = o, ¥[s(s + 2{w,)] with ©, = 1 rad/s.
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3: EXPANDED FIG. 6 (on the following pages).

All these graphical simulation results are for the trials quantitatively described in Table I
of the paper; Fig. 6 shows only two of these 20 runs, each of which may include both a lead and a
lag design. For brevity, graphical results for all the other runs were omitted from the paper but are
presented below. Showing here a greater variety of plants demonstrates the versatility of the RD-
based compensator design algorithm and serves to compare it with the conventional PM-based Bode
design procedures for lag and lead compensators.
Each plot in a row pertains to the same plant (in the plots, K, is referenced by K):

(a, left column) Root locus.

(b, center column) Polar plots of uncompensated and RD-compensated systems.

(¢, right column) Closed-loop step response simulation comparisons.
Note that numerous stylistic improvements have been made on the graphs in Fig. 6 of the paper
relative to those shown here.
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4: SEARCH RANGE REFINEMENTS FOR GREATER EFFICIENCY.

An example of increases in search efficiency possible in future versions of the algorithm (such as
in a student project) is indicated in reference to Fig. a for lead designs and Fig. b (diagrams on the
following pages) for lag designs. Notice that the systems, both uncompensated and compensated,
are the same as in Fig. 4 of the paper: G(s) = (s+5)/[s(s+1.5)(s*+4s+20)] and K_ = 20.; some of the
details in Fig. 4 have been omitted, and new details have been added for this discussion. These plots
show the uncompensated and compensated polar plots for G(s), ®,, ®,, ®,, 6,, RD,, RD,_,, and
RD,.." In Fig. a (lead), at a given candidate frequency o,, the hatched areas show the possible
movement of the polar plot point for @, obtainable by adding a stable, minimum-phase lead
compensator. This region is the intersection of the exterior of the IKmG(j(ol) | circle and counter-
clockwise (CCW) from the ray at angle /K _G(jo,), because the lead compensator increases both the
magnitude and phase of K ,G(jw,). In general, it would be pointless to examine 6, (which is
negative) more positive than 0,, where 8, is the (negative) angle from -1 to the (geometrically
determinable) lower intersection of the RD, and thG(jo)l‘) | circles; in this case (due to small value
selected for K, for the particular steady-state error requirement) , the circles do not intersect, so the
most we could require is that 0, be less than 8; The general requirement 6, > 08, would have to be
satisfied because all points on the selected RD, circle above 6, are impossible to achieve with lead
compensation, as they all fall within the thG(j(ol) |circle. The latter requirement 6, < 6; must hold
because otherwise 8, would involve a phase lag, which a lead compensator cannot provide. Note that
choosing RD, > 0.4 already will keep the compensated polar plot out of the nonrobust circle, as long
as RD,;, is not too much less than RD,. The reader might arrive at additional constraints on RD,,
®,, and 0, from this diagram. For example, if many such plots are done for different successful
plants/compensated systems, patterns on the approximate relation between optimal 6, and o, may
emerge. For example, if o, is selected, then the best 8, may typically be within a relatively narrow
range for most plants and thus the search range for 6, may be further tightened. Note: As in the
paper, RD, has artificially been made significantly larger than RD, ' and ®, has artificially been
moved along the polar plot farther away from ,'; the true location of ©, is indicated by an X with
an arrow pointing into it. Notice that 0, in Fig. b now refers to the true location of ,, unlike in the
paper (as the reader now is sufficiently familiar with the diagram to make that transition). Also note
from the discussion above about the limitations on what a lead compensator can do how if K__ is too
large, the polar plot will extend beyond -1 and a first-order lead compensator will be unable to
stabilize the system.

Similarly, in Fig. b, the region of possible movement by a lag compensator, the hatched region, is
within the [I(,HG(jco,) | circle and clockwise from the ray at angle /K G(jo,) because the lag
compensator will reduce the gain and phase at ® = ®,. It would similarly be pointless to examine
designs with 8, more negative than 6., where 0. is the (negative) angle from -1 to the intersection
of the RD, and K _G(jm,)| circle closer to the positive real axis because all such 0, would be
impossible to achieve with a lag compensator. Note: As in the paper, RD, has artificially been made
significantly larger than RD, ' and o, has artificially been moved along the polar plot farther away
from w,'; the true location of ®, is indicated by an X with an arrow pointing into it. Consequently,
the artificial location of ®, in the compensated system actually violates the rule just established!
But notice that the true location of ®, is within the hatched area. Notice, however, that 6, in Fig.
b now refers to the true location of ®,, unlike in the paper (as the reader now is sufficiently familiar
with the diagram to make that transition).
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